Thermal decomposition of RDX from reactive molecular dynamics.

نویسندگان

  • Alejandro Strachan
  • Edward M Kober
  • Adri C T van Duin
  • Jonas Oxgaard
  • William A Goddard
چکیده

We use the recently developed reactive force field ReaxFF with molecular dynamics to study thermal induced chemistry in RDX [cyclic-[CH(2)N(NO(2))](3)] at various temperatures and densities. We find that the time evolution of the potential energy can be described reasonably well with a single exponential function from which we obtain an overall characteristic time of decomposition that increases with decreasing density and shows an Arrhenius temperature dependence. These characteristic timescales are in reasonable quantitative agreement with experimental measurements in a similar energetic material, HMX [cyclic-[CH(2)N(NO(2))](4)]. Our simulations show that the equilibrium population of CO and CO(2) (as well as their time evolution) depend strongly of density: at low density almost all carbon atoms form CO molecules; as the density increases larger aggregates of carbon appear leading to a C deficient gas phase and the appearance of CO(2) molecules. The equilibrium populations of N(2) and H(2)O are more insensitive with respect to density and form in the early stages of the decomposition process with similar timescales.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of RDX Decomposition Interacting with Shock Wave via Molecular Dynamics

Cylotrimethylenetrinitramine (RDX), with the chemical formula C3H6N6O6,is an energetic organic molecule used widely in military and industrial commodities ofexplosives. By stimulating RDX through exerting temperature or mechanical conditionssuch as impact or friction, decomposition reaction occurs at a very high rate. Moleculardynamics techniques and LAMMPS code with Rea...

متن کامل

Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.

We report molecular dynamics (MD) simulations using the first-principles-based ReaxFF reactive force field to study the thermal decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at various densities and temperatures. TATB is known to produce a large amount (15-30%) of high-molecular-weight carbon clusters, whereas detonation ...

متن کامل

Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials

For large-scale atomistic simulations involving chemical reactions to study nanostructured energeticmaterials, we have designed linear-scaling molecular dynamics algorithms: 1) first-principles-based fast reactive force field molecular dynamics, and 2) embedded divide-and-conquer density functional theory on adaptive multigrids for quantum-mechanical molecular dynamics. These algorithms have ac...

متن کامل

شبیه‌سازی تجزیه RDX از طریق برهم کنش با موج شوک با استفاده از دینامیک مولکولی

Cylotrimethylenetrinitramine (RDX), with the chemical formula C3H6N6O6, is an energetic organic molecule used widely in commodities of explosives. Its partial stimulation results in decomposition reaction at very high rate. Molecular dynamic technique and LAMMPS code with ReaxFF-lg were employed to simulate initiation of RDX. Potential energy variations of the system were calculated for five di...

متن کامل

پارامترهای تجزیه حرارتی ماده منفجره پلاستیکی PBXN-111

PBXN-111 is a cast cured underwater explosive containing RDX, ammonium perchlorate, aluminium powder and HTPB binder. In this research, the kinetics and thermodynamic properties of thermal decomposition of this PBX investigated by Kissinger and Flynn-Wall-Ozawa (FWO) methods based on differential scanning calorimetry under non-isothermal condition with heating rate of 5, 10, 15 and 20 °C/mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 122 5  شماره 

صفحات  -

تاریخ انتشار 2005